	AF_IC03_Operating Systems
Unit 3

Originally computers did not have an operating system and were governed by a human operator. The operator must have a thorough knowledge of computer architecture, being often the same engineer who had designed it. Today it would be impossible to work with a computer without operating system. Suppose that only a small group of people could work with computers, it is clear that computers would not have had the success they have had.
The operating system is the first software block studied to date and manages almost all hardware elements discussed so far. In addition to managing the hardware, the operating system provides a human-machine communication interface that simplifies the task to the user, allowing work on the different blocks of computer through commands or mouse clicks.
	An Operating System (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs.

[image: image1.png]
Figure 1 by Golftheman (Wikipedia)
The operating system is composed of several parts, which exist in order to make the different elements of a computer work together. Have a look to this list:

· Process management

· Memory management

· File system

· Device drivers

· Networking

· Security

· I/O management

· User interface

1.1. Process management
When application starts, the operating system is the responsible for allocating its code in main memory and managing its correct execution. The execution of a program creates a task for the task manager. When the task starts it creates a process. The operating system is responsible for scheduling the execution of multiple processes according to various optimization criteria in order to maximize overall system performance.

Modern operating systems simulate the execution of parallel applications through interleaving processes, i. e.: alternately running small portions of active processes. This rotation creates the illusion that the user is running multiple tasks in parallel (multi-tasking).

But, what is a process? We can describe a process as:

· A program in execution

· An instance of a running program

· The entity that can be assigned to, and executed on, a processor

· A unit of activity characterized by a single sequential thread of execution, a current state, and an associated set of system resources.
	[image: image2.png]
	Process

1.1.1. Process image
As the process runs, its context (state) changes – register contents, memory contents, etc., are modified by execution.
The process image represents the current status of the process and it consists of:

· Executable Code.
· Static Data area.
· Stack & Heap area.
· Process Control Block (PCB): data structure used to represent execution context.
· Other information needed to manage process.
1.1.2. Process states

An operating system that allows multi-tasking needs processes to have certain states.
First, the process is "created" - it is loaded from a secondary storage device into main memory. After that the process scheduler assigns it the state "waiting". It waits for the scheduler to make a context or process switch save the process image and load the process into the processor. The process state then becomes "running", and the processor executes the process instructions.

If a process needs to wait for a resource (wait for user input, I/O device access or file system access), it is assigned the "blocked" state. The process state is changed back to "waiting" when the process no longer needs to wait. Once the process finishes execution, or is terminated by the operating system, it is moved to the "terminated" state and finally is removed from main memory.
[image: image3.png]
Figure 2 Process states

In order to maximize the number of processes stored in main memory, secondary memory as well as main memory (swapping) can be used. Two new states appear “swapped out and waiting” and “swapped out and blocked”. But we will study this later in this unit.
1.1.3. Context switch

A context switch involves two processes: one leaves the “running” state and another that enters the “running” state. During this operation, the context (PCB) of one process is saved and the context of the following process is restored.
	[image: image4.png]
	Context switch

1.1.4. Scheduling

The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. There are many different scheduling algorithms, but all of they are out of the objectives of our study.
	[image: image5.png]
	Scheduling

1.2. Memory management
As mentioned earlier the operating system is responsible for allocating the executable code of an application or program when it requires memory to run. The memory manager is responsible for providing memory to applications and it manages the available space, occupied and free memory if necessary. It is also responsible for moving information between different memories that form the memory hierarchy.
	[image: image6.png]
	Memory management

1.2.1. Virtual memory
The use of virtual memory increases the effectively available amount of RAM using paging or swapping to secondary storage. The address space of a program is divided into “pages” (a set of contiguous memory locations). The page size is typically at least 4Kb and memory is divided into page frames of same size. We can save space by loading only those pages that a program needs now and with this technique, more programs can be in memory at any given time.
[image: image7.png]
Figure 3 by Ehamberg (Wikipedia)
1.3. File system
The OS providing procedures to store, retrieve and update data as well as manage the available space on the device(s) which contain it.
The file manager does many tasks similar to main memory manager with some differences, instead of working over the main memory, the file manager works with storage peripheral devices. Therefore, it is responsible for the management of access, available space and secondary memory logical organization.
The file system allows faster access, higher reliability, and a better use out of the drive's available disk space.
	[image: image8.png]
	File system

1.4. Device drivers

Peripheral devices that aim to interact with a computer will do it through a particular OS. This needs to know neither architecture nor operation of the peripheral device. For this reason, the manufacturer of the device in question is responsible for developing a program manager or driver, which will act as translator between the OS and the peripheral device. So we can say that a driver is the software component necessary for the correct operation of a particular peripheral device over a specific platform.
	[image: image9.png]
	Device drivers

1.5. Networking

Nowadays most operating systems support a variety of networking protocols, hardware, and applications for using them. This means that computers running dissimilar operating systems can participate in a common network for sharing resources such as computing, files, printers, and scanners using either wired or wireless connections. Networks can essentially allow a computer's operating system to access the resources of a remote computer to support the same functions as it could if those resources were connected directly to the local computer. Some network services allow the resources of a computer to be accessed transparently, such as Secure Shell which allows networked users direct access to a computer's command line interface.
1.6. Security

The operating system must be capable of distinguishing between requests which should be allowed to be processed, and others which should not be processed. Some OS simply distinguish between “privileged” and “non-privileged” modes of execution. Other OS have a form of requester identity, such as a user name. To establish identity there may be a process of authentication. Often a username must be quoted, and each username may have a password.
1.7. I/O management

The input/output management allows the communication between a computer and the outside world, possibly a human or another computer. Interactive OS often spend a lot of time waiting user inputs or managing communications with I/O peripherals.
1.8. User interface

The user interface makes man-machine communication possible, allowing us to act over the computer through commands or mouse clicks. There are two types of user interfaces:
Graphical user interfaces (GUI) - Programs take the form of images on the screen, and the files, folders (directories), and applications take the form of icons and symbols. A mouse is used to navigate the computer.
Command-line interface (CLI) - Interaction with a computer the user issues commands to the program in the form of successive lines of text.
	[image: image10.png]
	User interface

[image: image11.png]
PAGE
6
AF_IC03_ Operating Systems / Unit 3

